Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in 1-acetyl-4-(p-chlorobenzylidene-amino)-3-ethyl-4,5-dihydro-1 H -1,2,4-triazol-5-one

Ufuk Coruh, ${ }^{\text {a* }}$ Bahittin Kahveci, ${ }^{\text {b }}$ Selami Șaṣmaz, ${ }^{\text {b }}$ Erbil Ag̃ar, ${ }^{\text {c }}$ Youngme Kim ${ }^{\text {d }}$ and Ahmet Erdönmez ${ }^{\text {e }}$
${ }^{\text {a }}$ Department of Computer Education and Instructional Science, Educational Faculty, Ondokuz Mayıs University, 55200-Atakum-Samsun, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Rize Art and Science Faculty, Karadeniz Teknik University, Rize, Turkey, ${ }^{\text {c }}$ Department of Chemistry, Art and Science Faculty, Ondokuz Mayıs University, 55139-Samsun, Turkey, ${ }^{\text {d Department of Chemistry, Ewha Womans University, Seoul }}$ 120-750, South Korea, and ${ }^{\mathbf{e}}$ Department of Physics, Art and Science Faculty, Ondokuz Mayıs University, 55139-Samsun, Turkey
Correspondence e-mail: ucoruh@hotmail.com

Received 15 April 2003
Accepted 16 June 2003
Online 31 July 2003
The title compound, $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{2}$, contains both a phenyl and a triazole ring, both of which are approximately coplanar with the entire molecule. The triazole ring has substituents at the 1 -, 2- and 4 -positions. Intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ interactions, together with intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, help to stabilize the structure.

Comment

$1,2,4$-Triazole ring systems are typical planar six- π-electron partially aromatic systems, and $1,2,4$-triazole and its derivatives are used as starting materials for the synthesis of many heterocycles (Desenko, 1995). In addition to having extensive chemical significance (Benson, 1967; Temple, 1981), the 1,2,4triazole nucleus is also associated with diverse pharmacological properties, such as analgesic, anti-asthmatic, diuretic, anti-inflammantory, fungicidal, bactericidal and pesticidal activities (Bennur et al., 1976; Webb \& Parsons, 1977; Heubach et al., 1980; Mohamed et al., 1993). Knowledge of the molecular structure of these compounds is important in order to understand their reactivity under condensation reaction conditions. Therefore, the crystal structure of the title compound, (I), has been investigated and is reported here.

Compound (I) (Fig. 1) consists of a triazole ring with an acetyl group substituted on the N atom in the 1-position, an ethyl group substituted on the C atom in the 3 -position, an oxo O atom substituted on the C atom at the 5 -position and a p-chlorobenzylidenamine group substituted at the 4 -position. The $\mathrm{N}=\mathrm{C}$ bond lengths $[\mathrm{N} 1=\mathrm{C} 7=1.272$ (3) \AA and $\mathrm{N} 3=$ $\mathrm{C} 9=1.278$ (3) \AA; Table 1] agree with values reported in the literature [1.261 (4) \AA in the 4 -amino-3-methyl-1,2,4-triazole-

5-thione derivative of p-nitrobenzaldehyde (Liu et al., 1999) and 1.267 (2) \AA in 4-(4-hydroxybenzylidenamino)-4 $\mathrm{H}-1,2,4-$ triazole hemihydrate (Zhu et al., 2000)].

(I)

The presence of an acetyl group on atom N4 causes a lengthening of the $\mathrm{N}-\mathrm{N}$ bond length $[\mathrm{N} 3-\mathrm{N} 4=1.394$ (3) \AA] with respect to the corresponding bonds in 5-(2-chloro-phenyl)-4-phenyl-3,4-dihydro-2 H -1,2,4-triazole-3-thione [N $\mathrm{N}=1.374$ (2) \AA; Puviarasan et al., 1999] and in 4-methyl-1,2,4triazole and 1-methyltetrazole $[\mathrm{N}-\mathrm{N}=1.344$ (2) \AA; Palmer \& Parsons, 1996]. The Cl-C3 bond length [1.737 (3) Å] agrees with those found in 3,5-bis(2-pyridyl)-4-(p-chlorophenyl)-4H-1,2,4-triazole (Wang et al., 1998) and 5-(2-chlorophenyl)-4-phenyl-3,4-dihydro-2H-1,2,4-triazole-3-thione (Puviarasan et al., 1999). Atom N4, carrying the acetyl substituent, is trigonal, the sum of the three bond angles around it being 359.96°. Atom N 2 , carrying the p-chlorobenzylideneamine substituent, is also trigonal, the sum of the three bond angles around it being 360°.

In (I), the $1,2,4$-triazole ring $(A ; \mathrm{C} 8 / \mathrm{N} 2 / \mathrm{C} 9 / \mathrm{N} 3 / \mathrm{N} 4)$ and the phenyl ring ($B ; \mathrm{C} 1-\mathrm{C} 6$) are planar, with the maximum deviation from the least-squares planes being 0.003 (2) \AA for atom C8 and 0.004 (3) \AA for atom C3. The dihedral angle between the planes of rings A and B is 6.13°, indicating that the whole molecule is nearly planar, which agrees well with the value observed in 1-acetyl-4-(p-chlorobenzylideneamino)-3-methyl-4,5-dihydro-1H-1,2,4-triazol-5-one (Çoruh et al., 2003).

There are intramolecular and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions in the structure of (I). Firstly, atom C7 interacts with atom O1. Secondly, atom C13 interacts with atom N3 of the 1,2,4-triazole ring. Atom O 2 of the acetyl group forms an intermolecular bifurcated hydrogen bond with the H atoms of ring B (atoms H 4 and H 5) of a symmetry-related molecule

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 2
The hydrogen-bond network in (I); a view of the triclinic cell.
$\left[\mathrm{C} 4 \cdots \mathrm{O} 2^{\mathrm{i}}=3.139(3) \AA\right.$ and $\mathrm{C} 5 \cdots \mathrm{O} 2^{\mathrm{i}}=3.152(3) \AA$; symmetry code: (i) $1-x, 1-y, 1-z$; Fig. 2 and Table 2].

The crystal structure also contains an intermolecular C$\mathrm{H} \cdots \pi$ contact involving the $1,2,4$-triazole ring of a symmetryrelated molecule at $(1+x, y, z)[\mathrm{C} 5 \cdots C g 1=3.694$ (3) \AA, $\mathrm{H} 5 \cdots \mathrm{Cg} 1=3.34 \AA$ and $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cg} 1=105^{\circ} ; C g 1$ is the centroid of ring A at $(1+x, y, z)]$ and two intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions in which atoms C10 and C13 interact with rings B of symmetry-related molecules at $(-1+x, y, z)$ and $(-1+x, 1+y, z)[\mathrm{C} 10 \cdots C g 2=3.633(3) \AA, \mathrm{H} 10 A \cdots C g 2=$ $2.80 \AA$ and $\mathrm{C} 10-\mathrm{H} 10 A \cdots C g 2=145^{\circ} ; C g 2$ is the centroid of ring B at $(-1+x, y, z) ; \mathrm{C} 13 \cdots C g 3=3.733(3) \AA, \mathrm{H} 13 B \cdots$ $C g 3=3.17^{\circ}$ and $\mathrm{C} 13-\mathrm{H} 13 B \cdots C g 3=119^{\circ} ; C g 3$ is the centroid of ring B at $(-1+x, 1+y, z)]$. These interactions play a role in the structural packing of (I).

Experimental

4-(p-Chlorobenzylideneamino)-3-methyl-4,5-dihydro-1H-1,2,4-triaz-ol-5-one (0.01 mol) was treated with acetic anhydride $(10 \mathrm{ml})$ and the mixture was refluxed for 30 min . After addition of absolute ethanol $(30 \mathrm{ml})$ to the solution, the mixture was refluxed for 1 h and the product was filtered off and dried in vacuo. Several recrystallizations of this product from ethanol gave pure (I) (yield 82%; m.p. 454$455 \mathrm{~K})$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): \nu(\mathrm{C}=\mathrm{O}) 1769$ and $1697, \nu(\mathrm{C}=\mathrm{N}) 1623$ and 1593, ν (benzoid ring) 820 ; ${ }^{1} \mathrm{H}$ NMR (p.p.m. in DMSO- d_{6}): $\delta 2.40(s$, $3 \mathrm{H}), 2.50(s$, acetyl, 3H), $7.36(d, 2 \mathrm{H}, \mathrm{ArH}), 7.60(d, 2 \mathrm{H}, \mathrm{ArH}), 9.36$ (s, CH); ${ }^{13} \mathrm{C}$ NMR (in DMSO- d_{6}): $\delta 166.24$ (acetyl C=O), 155.79 $(\mathrm{N}=\mathrm{CH}), 151.18$ (triazole $\mathrm{C}=\mathrm{O}$), 148.14, 133.68, 132.95, $132.13(2 \mathrm{C})$, 131.80 (2C), 23.61, 12.18.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{2}$	$Z=2$
$M_{r}=292.72$	$D_{x}=1.435 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.341(2) \AA$	Cell parameters from 2907
$b=8.6092(10) \AA$	reflections
$c=13.083(2) \AA$	$\theta=2.5-26.0^{\circ}$
$\alpha=76.011(10)^{\circ}$	$\mu=0.29 \mathrm{~mm}^{-1}$
$\beta=84.03(2)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=78.26(2)^{\circ}$	Prism, colourless
$V=677.4(3) \AA^{\circ}$	$0.35 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 MACH3

$$
h=0 \rightarrow 7
$$

$k=-10 \rightarrow 10$
diffractometer
$2 \theta-\omega$ scans
2907 measured reflections
2654 independent reflections
1818 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=26.0^{\circ}$
$l=-16 \rightarrow 16$
3 standard reflections frequency: 60 min intensity decay: negligible

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0885 P)^{2} \\
&+0.0264 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$R(F)=0.049$
$w R\left(F^{2}\right)=0.144$
$S=1.04$
2654 reflections
181 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\AA},{ }^{\circ}\right)$.

$\mathrm{Cl}-\mathrm{C} 3$	$1.737(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.379(3)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.206(3)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.394(3)$
$\mathrm{O} 2-\mathrm{C} 12$	$1.193(3)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.278(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.378(3)$	$\mathrm{N} 4-\mathrm{C} 8$	$1.390(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.272(3)$	$\mathrm{N} 4-\mathrm{C} 12$	$1.403(3)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.390(3)$		
N2-N1-C7	$119.2(2)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$118.5(2)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8$	$131.2(2)$	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 2$	$129.0(2)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 9$	$119.79(19)$	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 4$	$129.6(2)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9$	$109.04(19)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 4$	$101.44(19)$
$\mathrm{N} 4-\mathrm{N} 3-\mathrm{C} 9$	$104.71(19)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{N} 3$	$112.1(2)$
$\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 8$	$112.72(18)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	$122.8(2)$
$\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 12$	$120.04(19)$	$\mathrm{N} 3-\mathrm{C} 9-\mathrm{C} 10$	$125.1(2)$
$\mathrm{C} 8-\mathrm{N} 4-\mathrm{C} 12$	$127.2(2)$	$\mathrm{O} 2-\mathrm{C} 12-\mathrm{N} 4$	$121.0(2)$
$\mathrm{Cl}-\mathrm{C} 3-\mathrm{C} 2$	$119.3(2)$	$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 13$	$124.5(2)$
$\mathrm{Cl}-\mathrm{C} 3-\mathrm{C} 4$	$119.5(2)$	$\mathrm{N} 4-\mathrm{C} 12-\mathrm{C} 13$	$114.5(2)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.54	$3.139(3)$	123
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.55	$3.152(3)$	123
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1$	0.93	2.26	$2.931(3)$	128
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{~N} 3$	0.96	2.18	$2.721(3)$	114

Symmetry code: (i) $1-x, 1-y, 1-z$.

H atoms were treated as riding atoms using SHELXL97 (Sheldrick, 1997) defaults, with methyl C-H distances of $0.96 \AA$ and other $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CAD-4-PC Software; data reduction: XCAD4/PC (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

[^0]
References

Bennur, S. C., Jigajinni, V. B. \& Badiger, V. V. (1976). Chem. Abstr. 85, 94306.

Benson, F. R. (1967). Tetrazoles, Tetrazines and Purines and Related Ring Systems, Heterocyclic Compounds, Vol. 8, edited by R. C. Elderfield, pp. 1-104. New York: Wiley.
Çoruh, U., Kahveci, B., Şaşmaz, S., Ag̃ar, E. \& Kim, Y. (2003). Acta Cryst. E59, o530-o532.
Desenko, S. M. (1995). Khim. Geterotsikl. Soedin. (Chem. Heterocycl. Comput.), pp. 2-24.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harms, K. (1997). XCAD4/PC. University of Marburg, Germany.
Heubach, G., Sachse, B. \& Buerstelli, H. (1980). Chem. Abstr. 92, 181200h; Acta Cryst. B38, 2248.

Liu, Y.-F., Chantrapromma, S., Shanmuga Sundara Raj, S., Fun, H.-K., Zhang, Y.-H., Xie, F.-X., Tian, Y.-P. \& Ni, S.-S. (1999). Acta Cryst. C55, 93-94.

Mohamed, E. A., El-Deen, I. M., Ismail, M. M. \& Mohamed, S. M. (1993). Indian J. Chem. Sect. B, 32, 933-937.
Palmer, M. H. \& Parsons, S. (1996). Acta Cryst. C52, 2818-2822.
Puviarasan, K., Govindasamy, L., Shanmuga Sundara Raj, S., Velmurugan, D., Jayanthi, G. \& Fun, H.-K. (1999). Acta Cryst. C55, 951-953.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Temple, C. (1981). In The Chemistry of the Heterocyclic Compounds, Vol. 34. New York: Wiley Interscience.
Wang, Z., Bai, Z., Yang, J., Okamoto, K.-I. \& You, X. (1998). Acta Cryst. C54, 438-439.
Webb, M. A. \& Parsons, J. H. (1977). Chem. Abstr. 86, 117870W.
Zhu, D.-R., Xu, Y., Liu, Y.-J., Song, Y., Zhang, Y. \& You, X.-Z. (2000). Acta Cryst. C56, 242-243.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1165). Services for accessing these data are described at the back of the journal.

